Definition of "DUTY CYCLE"	 a. The command line that enables print statement output b. The percentage of time power is ON during PWM c. A specific limit that is met or exceeded for something to occur d. The analog period, or how rapidly the device pulses
Definition of "FREQUENCY"	 a. The command line that enables print statement output b. The percentage of time power is ON during PWM c. A specific limit that is met or exceeded for something to occur d. The analog period, or how rapidly the device pulses
Definition of "REPL"	 a. The command line that enables print statement output b. The percentage of time power is ON during PWM c. A specific limit that is met or exceeded for something to occur d. The analog period, or how rapidly the device pulses
Definition of "THRESHOLD"	 a. The command line that enables print statement output b. The percentage of time power is ON during PWM c. A specific limit that is met or exceeded for something to occur d. The analog period, or how rapidly the device pulses
What two properties can be set when using PWM?	 a. Height and depth b. Time and distance c. Wavelength and amplitude d. Frequency and duty-cycle
What is the correct way to set up a blinking LED?	 a. led = exp.digital_out(exp.PORT0, frequency=2) b. led = exp.analog_out(exp.PORT0, frequency=2) c. led = exp.pwm_out(exp.PORT0, frequency=2) d. led = exp.pwm_in(exp.PORT0, frequency=2)
What is the correct way to print() a string and a variable:	 a. print("Hello", "name") b. print(Hello, name) c. print("Hello", name) d. print("Hello" name)
REPL can be used for all the following EXCEPT:	 a. Changing the sensor PORT b. Testing Python features c. See "print()" statement output d. Test snippets of code
What is the output by the temperature sensor?	 a. Temperature in degrees b. Temperature in Celsius c. Sound waves d. Volts
Before the temperature sensor data is used for comparison, what must happen?	 a. Convert the raw data to Celsuis b. Get the average of the raw data c. Convert the raw data to Fahrenheit d. Get the high and low temperature readings
What is the output by the sound sensor?	 a. Percentage of loudness b. Volts c. Sound intensity d. Sound waves

Before the sound sensor data is used for comparison, what must happen?	 a. Convert the raw data to sound waves b. Get the average of the raw data c. Convert the raw data to decibels d. Get the high and low sensor readings
The temperature sensor returns a value when the temperature increases.	a. Higher b. Lower c. Average d. Higher and lower
The sound sensor returns a value when the sound intensity increases.	a. Higher b. Lower c. Average d. <mark>Higher and lower</mark>
What is the correct condition for checking for a sound explosion?	 a. if variation > LOUD_THRESHOLD: b. if variation > LOUD_THRESHOLD or variation < -LOUD_THRESHOLD: c. if -LOUD_THRESHOLD < variation < LOUD_THRESHOLD: d. if sound_sensor.value == LOUD_THRESHOLD: